The idea of bacteria-proof clothing has so far survived a battery of tests. “We've exposed the treated fabric to all kinds of bacteria over and over again, and we can't find any sticking to it,” she says. “We're still trying to figure out the mechanism, but we know it works with all different types of bacteria.” She has already collaborated with a major medical-supply company to prove that the nanocrystals can be cheaply incorporated into manufacturing processes. Now, she's investigating ways to get the crystals into a variety of other materials used in hospitals, including stainless steel, paint and plastics. These treated materials would stay bacteria-free much longer than conventional hospital surfaces that are wiped with common disinfectants, she says.
Lasers are another potential weapon against bacteria. Mohamed Seleem, a Purdue University biologist, and his colleagues were trying to come up with a way to quickly identify infectious bacteria in blood samples by hitting the samples with laser light of different colors. Along the way, they noticed that certain drug-resistant bacteria changed color from gold to white just seconds after being hit with a mild beam of blue laser light. Some of these “photobleached” bugs died, and others became so weakened that they lost their resistance to ordinary antibiotics. The blue light, it turned out, damages the pigment in the bacteria's outer membrane. “It only affects a particular pigment,” says Seleem. “So it doesn't harm any other cells.”
译文由可可原创,仅供学习交流使用,未经许可请勿转载。