手机APP下载

您现在的位置: 首页 > 英语听力 > 英语演讲 > TED-Ed教育演讲 > 正文

你能解决诸神黄昏之下的这道难题吗

来源:可可英语 编辑:max   可可英语APP下载 |  可可官方微信:ikekenet

Ragnarok. The fabled end of the world, when giants, monsters, and Norse gods battle for the future.

诸神黄昏。传说中的世界末日,巨人、怪物和北欧诸神为了未来而战。
The gods were winning handily until the great serpent Jormungandr emerged.
众神胜券在握,直到巨蛇耶梦加得现身。
It swallowed Valhalla, contorted itself across the land, and then merged into one continuous body with no head and no tail.
它吞掉了英灵神殿瓦尔哈拉,用身体盘绕着大地,化为了一具连绵不绝、无头无尾的躯体。
As it begins to digest Valhalla, an exhausted Odin explains that he has just enough power to strike the creature with one final bolt of lightning.
当巨蛇开始消化瓦尔哈拉时,筋疲力竭的众神之王奥丁解释说,他只剩下朝那怪物击出最后一道闪电的力气了。
If you magnify his blast with your fabled hammer, Mjolnir, it should pierce the massive serpent.
如果用你举世闻名的雷神之锤将他的闪电攻击增倍,应该就足以贯穿巨蟒的身体。
You'll run with super-speed along the serpent's body.
你可以用超人的速度沿着蛇身疾驰。
When you hold your hammer high, Odin will strike it with lightning and split Jormungandr open at that point.
当你高高举起锤子时,奥丁就会朝它掷出闪电,将耶梦加得从那一处劈开。
Then, you'll need to continue running along its body until every part of it is destroyed.
然后,你要继续沿着巨蛇的身体奔跑,直到将它的每一寸都摧毁。
You can't run over the same section twice or you'll fall into the already blasted part of the snake.
你不能重复踏过同一段区域,否则你会掉入巨蛇已经劈裂的身体中。
But you can make multiple passes through points where the creature intersects its own body.
但你可以反复经过巨蛇自身相互交错的节点。
If you leave any portion un-zapped, Jormungandr will magically regenerate, Odin's last power will be spent, and Valhalla will fall forever.
如果漏过任何一处未加电灼,耶梦加得就会藉由魔力重生,奥丁将耗尽最后的力量,瓦尔哈拉也将堕入永恒的黑暗。
What path can you take to destroy the serpent?
你该选择怎样的路径才能彻底摧毁巨蛇呢?
One powerful way to solve problems is to simplify.
要解决问题,一种有效方法是进行简化。
And in this case, we can focus our attention on the two things that are important for our path: intersections and the stretches of snake between them.
在这个问题中,我们可以着重关注对于要寻找的路径相当重要的两点:交叉点,以及交点之间的“蛇身”。
Or, as they're referred to in graph theory, nodes and edges. The edges are important because they're what we need to travel.
在图论中,它们分别被称作“节点”和“边”。边很重要,因为我们要走的就是边。
And the nodes matter because they connect the edges, and are where we may need to make choices as we run from edge to edge.
而顶点也不可小觑,因为边与边是通过节点相连的,而且当我们决定要跑向哪一条边时,我们需要在节点处做出决定。
This simplification into nodes and edges leaves us with a ubiquitous and important mathematical object known as a graph, or network.
将问题简化成节点与边,我们就得到了一个无处不在的重要的数学对象,叫做“图”,或者“网”。
We just need to figure out how to travel what mathematicians call an Eulerian path, which traces every edge exactly once.
我们只需要找出一条数学家所说的“欧拉路径”,将每条边恰好走一次(即一笔画问题)。
Instead of looking at the path as a whole, let's zoom in on a single node.
我们先不去看整体的路径,而是放大到一个节点上。

mqdefault.jpg

During some moment in your run, you'll enter that node, and then exit it. That takes care of two edges.

在你奔跑途中的某一刻,你会进入这个节点,然后离开。这就让你经过了两条边。
If you enter again, you'll need to exit again too, which requires another pair of edges.
如果你再次进入这个节点,你也必须再离开一次,这就需要经过另一对边。
So every point along your path will have edges that come in pairs.
因此,你的路径中的每一个点都会有成对的边。
One edge in each pair will function as entrance; the other as exit.
每对中的一条边是“入点”,另一条边则是“出点”。
And that means that the number of edges coming out of every node must be even.
这也意味着从每个节点出来的边数必须是偶数。
There are just two exceptions: the start and end points, where you can exit without entering, or vice versa.
只有两个例外:起点和终点,你可以只离开不进入,也可以只进入不离开。
If we look at the network formed by the serpent again, and number how many edges emerge from each node, a pattern jumps out that fits what we just saw.
如果我们再看看由巨蛇形成的网,并数数从每个节点发出了多少条边,一个与刚刚所见相符的图案便跃然而出。
Every node has an even number of edges emerging from it, except two.
除了两个节点,其它每个节点所连接的边数都是偶数。
So one of these must be the start of your route, and the other the end.
这两个例外中的一个肯定是起点,另一个肯定是终点。
Interestingly enough, any connected network that has exactly 2 nodes with an odd number of edges will also contain an Eulerian path.
有意思的是,任何一个连通图如果恰好有两个节点具有奇数条边,那么这个连通图肯定可以被一笔画。
The same is true if there are no nodes with an odd number of edges -- in that case the path starts and ends in the same spot.
如果图中没有节点连接了奇数条边,这个图同样能被一笔画--这种情况下,欧拉路径将在同一个点开始并结束。
So knowing that, let's return to our full graph. We can begin by taking care of this edge here.
知道这些之后,让我们回到完整的图。我们可以先途经这条边。
Now we can zig-zag back and forth across the whole snake until we reach the end.
然后就可以按“之”字形来回绕完整条蛇,直到抵达终点。
And that's just one solution -- it helps to be systematic, but you're likely to happen upon many others once you know where to begin and end your run.
这只是一种解法--保持条理性会让一笔画更容易,但只要知道了路径的起点和终点,你或许能发现许多条可行的路径。
You hold your hammer high at the opportune moment, and Odin sends the world-saving surge of lightning at you.
你抓准时机,将锤子高高举起,奥丁便将拯救世界的一道闪电朝你掷来。
Then you run like you've never run before. If you can pull this off, surely nothing could stop the might of the Norse Gods.
然后你就拼了老命地撒腿狂奔。如果你能成功,想必再无他物能阻止北欧众神的威势。
And if something like that were out there, slouching its way towards you... well, that would be a story for another day.
而假如还有像那样的家伙慢悠悠地拖着步子朝你走来...嗯,那就是后话了。

重点单词   查看全部解释    
split [split]

想一想再看

n. 劈开,裂片,裂口
adj. 分散的

 
function ['fʌŋkʃən]

想一想再看

n. 功能,函数,职务,重大聚会
vi. 运行

 
ubiquitous [ju:'bikwitəs]

想一想再看

adj. 到处存在的,遍在的

联想记忆
route [ru:t]

想一想再看

n. 路线,(固定)线路,途径
vt. 为 .

 
portion ['pɔ:ʃən]

想一想再看

n. 部分,份,命运,分担的责任

联想记忆
emerge [i'mə:dʒ]

想一想再看

vi. 浮现,(由某种状态)脱出,(事实)显现出来

联想记忆
solve [sɔlv]

想一想再看

v. 解决,解答

 
network ['netwə:k]

想一想再看

n. 网络,网状物,网状系统
vt. (

 
graph [grɑ:f]

想一想再看

n. 图表,示意图
vt. (以图表)表示

 
continuous [kən'tinjuəs]

想一想再看

adj. 连续的,继续的,连绵不断的

联想记忆

发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。