1. l1, l2 and l3 are three lines in space
The number of points at The number of points at
which lines l1 and l2 intersect which lines l2 and l3 intersect
1,三条肆意直线,L1和L2的交点的个数与L2和L3的交点的个数没关。
2. The number of 1/4-inch lengths in 1
a 4-inch length
2,是问4英尺中有若干好多个1/4英尺,应该是16个,所以A
3. The maximun number of solid cubes 4
having edges of length 1/2 meter that
can be placed inside a cubical box
having inside edges of length 1 meter
3边长为1的立方体里最多能放下几个边长为1/2的立方体,当然是8个咯
4. Cube C has volume 8 cubic centimeters
The area of one of the faces of cube C 3 square centimeters
4立方体体积是8,那一个面的面积当然是4咯
5. Ms.Smith got an 8 percent cost-of-living raise of $20 per week
Ms.Smith's new weekly salary $260
5 x*0.08=20,那x+20=270>260
6. On a certain number live, if -7 is a distance of 4 from n and 7 is a distance of 18
from n then n=
A.25 B.11 C.3 D.-3 E-11
6应该是-11
7. For all real numbers a and b. if a?b=a(a+b), then a?(a?b)=
A. a2+ab B a2+ab+a C a2+a+b D a3+a2b E a3+a2b+a2
注:a2暗示a平方,a3暗示a立方
7新界说的运算a?b=a(a+b), 那a?(a?b)=a?(aa+ab)=a(a+aa+ab)=aa+aaa+aab
8.secretary typed 6 letters,each of which had either 1 or 2 pages.If the secretary typed 10 pages in all, how many of the letters had 2 pages?
A 1 B 2 C 3 D 4 E 5
谜底是D,问题问题我都看不懂,是啥意思呢?
这是说秘书打六封信,没一封信要1页或者两页。如不美观秘书总共打了10页,那么有若干好多封信是两页?
解答:设有x封,则2x+(6-x)=10,解得x=4.
9 how many of the five numbers above are each equal to the product of an integer and an odd integer that greater than 1?
这五个数是:2 6 8 14 16
a.none b.one c.two d.there e.four
我感受这道题除了2不成能,其它四个数都有可能.可谜底是c,想问巨匠为什么?
问题问题意思是这5个数哪些可所以2个>1的数的积,一个是奇数,一个是整数,只有6和14的因数中有奇数,所以C.
10 这是一道图表题.
what was the approximate percent increase in personal income from 1965 to 1970?
是这样(1970-1965)/1965仍是(1970-1965)/1970这样?
是这样:(1970-1965)/1965