22.(8分)(2013•黄石)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)
考点: 解直角三角形的应用-方向角问题.
分析: 首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.
解答: 解:如图:过点A作AH⊥CF于点H,
由题意得:∠MCF=75°,∠CAN=15°,AC=125米,
∵CM∥AN,
∴∠ACM=∠CAN=15°,
∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,
∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.
答:消防车不需要改道行驶.
点评: 此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.
23.(8分)(2013•黄石)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:
(1)根据图象,直接写出y1、y2关于x的函数图象关系式;
(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;
(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
考点: 一次函数的应用.
分析: (1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;
(2)分为两种情况,在相遇前,两车之间的距离=总路车﹣客车行驶的路﹣出租车行驶的路程;当两车相遇后两车间的距离=客车行驶的路程+出租车行驶的路程﹣600求出其解即可;
(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.
解答: 解:(1)设y1=k1x,由图可知,函数图象经过点(10,600),
∴10k1=600,
解得:k1=60,
∴y1=60x(0≤x≤10),
设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则
,
解得:
∴y2=﹣100x+600(0≤x≤6);
(2)由题意,得
60x=﹣100x+600
x=,
当0≤x<时,S=y2﹣y1=﹣160x+600;
当≤x<6时,S=y1﹣y2=160x﹣600;
当6≤x≤10时,S=60x;
即S=;
(3)由题意,得
①当A加油站在甲地与B加油站之间时,(﹣100x+600)﹣60x=200,
解得x=,
此时,A加油站距离甲地:60×=150km,
②当B加油站在甲地与A加油站之间时,60x﹣(﹣100x+600)=200,
解得x=5,此时,A加油站距离甲地:60×5=300km,
综上所述,A加油站到甲地距离为150km或300km.
点评: 本题考查了分段函数,函数自变量的取值范围,用待定系数法求一次函数、正比例函数的解析式等知识点的运用,综合运用性质进行计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力,注意:分段求函数关系式,题目较好,但是有一定的难度.
24.(9分)(2013•黄石)如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图3,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=90°,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.
考点: 相似形综合题;黄金分割.
分析: (1)证明AD=CD=BC,证明△BCD∽△BCA,得到,则有,所以点D是AB边上的黄金分割点;
(2)证明S△ACD:S△ABC=S△BCD:S△ACD,直线CD是△ABC的黄金分割线;
(3)根据相似三角形比例线段关系,证明BG=GC,AH=HD,则梯形ABGH与梯形GCDH上下底分别相等,高也相等,S梯形ABGH=S梯形GCDH=S梯形ABCD,所以GH不是直角梯形ABCD的黄金分割线.
解答: 解:(1)点D是AB边上的黄金分割点.理由如下:
∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°.
∵CD是角平分线,
∴∠ACD=∠BCD=36°,
∴∠A=∠ACD,
∴AD=CD.
∵∠CDB=180°﹣∠B﹣∠BCD=72°,
∴∠CDB=∠B,
∴BC=CD.
∴BC=AD.
在△BCD与△BCA中,∠B=∠B,∠BCD=∠A=36°,
∴△BCD∽△BCA,
∴,
∴,
∴点D是AB边上的黄金分割点.
(2)直线CD是△ABC的黄金分割线.理由如下:
设△ABC中,AB边上的高为h,则S△ABC=AB•h,S△ACD=AD•h,S△BCD=BD•h.
∴S△ACD:S△ABC=AD:AB,S△BCD:S△ACD=BD:AD.
由(1)知,点D是AB边上的黄金分割点,,
∴S△ACD:S△ABC=S△BCD:S△ACD,
∴CD是△ABC的黄金分割线.
(3)直线不是直角梯形ABCD的黄金分割线.理由如下:
∵BC∥AD,
∴△EBG∽△EAH,△EGC∽△EHD,
∴,,
∴,即 ①
同理,由△BGF∽△DHF,△CGF∽△AHF得:
,即 ②
由①、②得:,
∴AH=HD,
∴BG=GC.
∴梯形ABGH与梯形GCDH上下底分别相等,高也相等,
∴S梯形ABGH=S梯形GCDH=S梯形ABCD.
∴GH不是直角梯形ABCD的黄金分割线.
点评: 本题考查了相似三角形的判定与性质、含36°角的等腰三角形、黄金分割、直角梯形等知识点.试题难度不大,理解题中给出的黄金分割点、黄金分割线的概念是正确解题的基础.
25.(10分)(2013•黄石)如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=﹣x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值.
(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=)
考点: 二次函数综合题.
分析: (1)先根据抛物线y=﹣x2+bx+c,当x=﹣时,y取最大值,得到抛物线的顶点坐标为(﹣,),可写出抛物线的顶点式,再根据抛物线的解析式求出A、C的坐标,然后将A、C的坐标代入
y=kx+m,运用待定系数法即可求出直线的解析式;
(2)根据等高三角形的面积比等于底边比,因此两三角形的面积比实际是AP:PC=1:3,即3AP=PC,可先求出AC的长,然后分情况讨论:
①当P在线段AC上时,过点P作PH⊥x轴,点H为垂足.由PH∥OC,根据平行线分线段成比例定理求出PH的长,进而求出P点的坐标;
②当P在CA的延长线上时,由PG∥OC,根据平行线分线段成比例定理求出PG的长,进而求出P点的坐标;
(3)联立两函数的解析式,设直线y=x+a与抛物线y=﹣x2﹣x+6的交点为M(xM,yM),N(xN,yN)(M在N左侧),则xM、xN是方程x2+x+a﹣6=0的两个根,由一元二次方程根与系数关系得,xM+xN=﹣,xM•xN=a﹣6,进而求出yM•yN=(a﹣6)﹣a+a2.
①由于∠MON=90°,根据勾股定理得出OM2+ON2=MN2,据此列出关于a的方程,解方程即可求出a的值;
②由于∠MON>90°,根据勾股定理得出OM2+ON2<MN2,据此列出关于a的不等式,解不等式即可求出a的范围.
解答: 解:(1)∵抛物线y=﹣x2+bx+c,当x=﹣时,y取最大值,
∴抛物线的解析式是:y=﹣(x+)2+,即y=﹣x2﹣x+6;
当x=0时,y=6,即C点坐标是(0,6),
当y=0时,﹣x2﹣x+6=0,解得:x=2或﹣3,
即A点坐标是(﹣3,0),B点坐标是(2,0).
将A(﹣3,0),C(0,6)代入直线AC的解析式y=kx+m,
得,
解得:,
则直线的解析式是:y=2x+6;
(2)过点B作BD⊥AC,D为垂足,
∵S△ABP:S△BPC=1:3,
∴=,
∴AP:PC=1:3,
由勾股定理,得AC==3.
①当点P为线段AC上一点时,过点P作PH⊥x轴,点H为垂足.
∵PH∥OC,
∴==,
∴PH=,
∴=2x+6,
∴x=﹣,
∴点P(﹣,);
②当点P在CA延长线时,作PG⊥x轴,点G为垂足.
∵AP:PC=1:3,
∴AP:AC=1:2.
∵PG∥OC,
∴==,
∴PG=3,
∴﹣3=2x+6,x=﹣,
∴点P(﹣,﹣3).
综上所述,点P的坐标为(﹣,)或(﹣,﹣3).
(3)设直线y=x+a与抛物线y=﹣x2﹣x+6的交点为M(xM,yM),N(xN,yN)(M在N左侧).
则,为方程组的解,
由方程组消去y整理,得:x2+x+a﹣6=0,
∴xM、xN是方程x2+x+a﹣6=0的两个根,
∴xM+xN=﹣,xM•xN=a﹣6,
∴yM•yN=(xM+a)(xN+a)=xM•xN+(xM+xN)+a2=(a﹣6)﹣a+a2.
①存在a的值,使得∠MON=90°.理由如下:
∵∠MON=90°,
∴OM2+ON2=MN2,即+++=(xM﹣xN)2+(yM﹣yN)2,
化简得xM•xN+yM•yN=0,
∴(a﹣6)+(a﹣6)﹣a+a2=0,
整理,得2a2+a﹣15=0,
解得a1=﹣3,a2=,
∴存在a值,使得∠MON=90°,其值为a=﹣3或a=;
②∵∠MON>90°,
∴OM2+ON2<MN2,即+++<(xM﹣xN)2+(yM﹣yN)2,
化简得xM•xN+yM•yN<0,
∴(a﹣6)+(a﹣6)﹣a+a2<0,
整理,得2a2+a﹣15<0,
解得﹣3<a<,
∴当∠MON>90°时,a的取值范围是﹣3<a<.
点评: 本题考查了二次函数的综合题型,其中涉及到运用待定系数法求函数的解析式,二次函数的性质,三角形的面积,平行线分线段成比例定理,函数与方程的关系,勾股定理,钝角三角形三边的关系等知识,综合性较强,难度较大.运用分类讨论、数形结合及方程思想是解题的关键.