19.(本题满分12分)
如图3,在圆锥中,已知的直径的中点.
(I)证明:
(II)求直线和平面所成角的正弦值.
(II)由(I)知,又所以平面在平面中,过作则连结,则是上的射影,所以是直线和平面所成的角.
在
在
20.(本题满分13分)
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(I)求第n年初M的价值的表达式;
(II)设若大于80万元,则M继续使用,否则须在第n年初对M更新,证明:须在第9年初对M更新.
解析:(I)当时,数列是首项为120,公差为的等差数列.
当时,数列是以为首项,公比为为等比数列,又,所以
因此,第年初,M的价值的表达式为
(II)设表示数列的前项和,由等差及等比数列的求和公式得
当时,
当时,
因为是递减数列,所以是递减数列,又
所以须在第9年初对M更新.
21.已知平面内一动点到点F(1,0)的距离与点到轴的距离的等等于1.
(I)求动点的轨迹的方程;
(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值.
(II)由题意知,直线的斜率存在且不为0,设为,则的方程为.
由,得
设则是上述方程的两个实根,于是
.
因为,所以的斜率为.
设则同理可得
故
当且仅当即时,取最小值16.
22.(本小题13分)
设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.