SAT数学部分的考试,常用公式会写在卷面上。但还是希望大家能熟练记忆常用的公式,这样就会节省同学们的做题时间。下面为大家整理的是关于几何中最基础的各个图形的面积和体积的公式。我们一起来看看详细内容吧。
圆柱体:
表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高)
圆锥体:
表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高,
平面图形
周长C和面积S
正方形 a—边长 C=4a S=a2
长方形 a和b-边长 C=2(a+b) S=ab
三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中
s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα
菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα
梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh
圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4
扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360)
弓形 l-弧长 S=r2/2·(πα/180-sinα)
b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2
r-半径 =r(l-b)/2 + bh/2
α-圆心角的度数 ≈2bh/3
圆环 R-外圆半径 S=π(R2-r2)
r-内圆半径 =π(D2-d2)/4
D-外圆直径
d-内圆直径
椭圆 D-长轴 S=πDd/4
d-短轴
二维图形
下面是一些二维图形的周长与面积公式。
圆:
半径= r 直径d=2r
圆周长= 2πr =πd
面积=πr2 (π=3.1415926…….)
椭圆:
面积=πab
a与b分别代表短轴与长轴的一半。
矩形:
面积= ab
周长= 2a+2b
平行四边形(parallelogram):
面积= bh = ab sinα
周长= 2a+2b
梯形:
面积= 1/2h (a+b)
周长= a+b+h (secα+secβ)
正n边形:
面积= 1/2nb2 cot (180°/n)
周长= nb
四边形(i):
面积= 1/2ab sinα
四边形(ii):
面积= 1/2 (h1+h2) b+ah1+ch2
以上就是关于面积和体积的SAT数学公式的全部内容,包括了SAT考试可能会涉及到的所有的几何公式。大家在备考的时候,可以根据自己的实际情况进行总结和应用。
圆柱体:
表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高)
圆锥体:
表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高,
平面图形
周长C和面积S
正方形 a—边长 C=4a S=a2
长方形 a和b-边长 C=2(a+b) S=ab
三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中
s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα
菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα
梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh
圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4
扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360)
弓形 l-弧长 S=r2/2·(πα/180-sinα)
b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2
r-半径 =r(l-b)/2 + bh/2
α-圆心角的度数 ≈2bh/3
圆环 R-外圆半径 S=π(R2-r2)
r-内圆半径 =π(D2-d2)/4
D-外圆直径
d-内圆直径
椭圆 D-长轴 S=πDd/4
d-短轴
二维图形
下面是一些二维图形的周长与面积公式。
圆:
半径= r 直径d=2r
圆周长= 2πr =πd
面积=πr2 (π=3.1415926…….)
椭圆:
面积=πab
a与b分别代表短轴与长轴的一半。
矩形:
面积= ab
周长= 2a+2b
平行四边形(parallelogram):
面积= bh = ab sinα
周长= 2a+2b
梯形:
面积= 1/2h (a+b)
周长= a+b+h (secα+secβ)
正n边形:
面积= 1/2nb2 cot (180°/n)
周长= nb
四边形(i):
面积= 1/2ab sinα
四边形(ii):
面积= 1/2 (h1+h2) b+ah1+ch2
以上就是关于面积和体积的SAT数学公式的全部内容,包括了SAT考试可能会涉及到的所有的几何公式。大家在备考的时候,可以根据自己的实际情况进行总结和应用。
上一篇:SAT数学概率论技巧
下一篇:SAT数学经典试题实例分析
- 本节目其它精彩文章:
- 查看更多>>
-
SAT数学考试问答题练习题(9)
3. A tree of height 50 feet casts a shadow 80 feet long at a certain time of day. A second tree near to the first casts a shadow 100 feet long at the same time. How many feet taller is the second ... -
SAT数学概率论技巧
对SAT数学概率论部分来说,你用的方法越简单,你做对的概率越大,而且还可以在考场上省出很多时间来做更有意义的事情。下面我们就对SAT数学概率论部分的常用解题技巧进行总结,以期事半功倍: -
SAT数学考试问答题练习题(10)
1. A time lapse camera takes pictures once every 40 seconds. How many pictures does it take in a 24 hour period? (Assume that it takes its first picture 40 seconds after the start of the time period.) -
SAT数学经典试题实例分析
作者想通过下面一组试题让读者对SAT数学有一个直接的感受。这些题目均来自SAT考试试题,故请注意它们的出题方式,难易程度,特别是语言的表述方法。希望读者读一读,想一想,做一做。如果你的英语基础比较好 -
SAT数学知识范围增量分析
以前的SAT数学考试程度仅相当于国内初三的数学水平,主要考学生的四则运算、因数、分数、百分数、小数及比率比值的基本知识及运算能力。这些数学的基本知识,对国内初三学生来说很简单。新SAT数学部分的试题,