手机APP下载

您现在的位置: 首页 > SAT > SAT学习经验 > 正文

SAT2化学知识讲解:Protein Synthesis

来源:天道留学 编辑:melody   可可英语APP下载 |  可可官方微信:ikekenet

  下面新东方网SAT思频道为大家整理了SAT2化学知识讲解:Protein Synthesis,供考生们参考,以下是详细内容。

  Now that we’ve described DNA and RNA, it’s time to take a look at the process of protein synthesis. The synthesis of proteins takes two steps: transcription and translation. Transcription takes the information encoded in DNA and encodes it into mRNA, which heads out of the cell’s nucleus and into the cytoplasm. During translation, the mRNA works with a ribosome and tRNA to synthesize proteins.

  Transcription

  The first step in transcription is the partial unwinding of the DNA molecule so that the portion of DNA that codes for the needed protein can be transcribed. Once the DNA molecule is unwound at the correct location, an enzyme called RNA polymerase helps line up nucleotides to create acomplementary strand of mRNA. Since mRNA is a single-stranded molecule, only one of the two strands of DNA is used as a template for the new RNA strand.

  The new strand of RNA is made according to the rules of base pairing:

  DNA cytosine pairs with RNA guanine

  DNA guanine pairs with RNA cytosine

  DNA thymine pairs with RNA adenine

  DNA adenine pairs with RNA uracil

  For example, the mRNA complement to the DNA sequence TTGCAC is AACGUG. The SAT II Biology frequently asks about the sequence of mRNA that will be produced from a given sequence of DNA. For these questions, don’t forget that RNA uses uracil in place of thymine.

  After transcription, the new RNA strand is released and the two unzipped DNA strands bind together again to form the double helix. Because the DNA template remains unchanged after transcription, it is possible to transcribe another identical molecule of RNA immediately after the first one is complete. A single gene on a DNA strand can produce enough RNA to make thousands of copies of the same protein in a very short time.

  Translation

  In translation, mRNA is sent to the cytoplasm, where it bonds with ribosomes, the sites of protein synthesis. Ribosomes have three important binding sites: one for mRNA and two for tRNA. The two tRNA sites are labeled the A site and P site.

  Once the mRNA is in place, tRNA molecules, each associated with specific amino acids, bind to the ribosome in a sequence defined by the mRNA code. tRNA molecules can perform this function because of their special structure. tRNA is made up of many nucleotides that bend into the shape of a cloverleaf. At its tail end, tRNA has an acceptor stem that attaches to a specific amino acid. At its head, tRNA has three nucleotides that make up an anticodon.

  An anticodon pairs complementary nitrogenous bases with mRNA. For example if mRNA has a codon AUC, it will pair with tRNA’s anticodon sequence UAG. tRNA molecules with the same anticodon sequence will always carry the same amino acids, ensuring the consistency of the proteins coded for in DNA.

  The Process of Translation

  Translation begins with the binding of the mRNA chain to the ribosome. The first codon, which is always the start codon methionine, fills the P site and the second codon fills the A site. The tRNA molecule whose anticodon is complementary to the mRNA forms a temporary base pair with the mRNA in the A site. A peptide bond is formed between the amino acid attached to the tRNA in the A site and the methionine in the P site.

  The ribosome now slides down the mRNA, so that the tRNA in the A site moves over to the P site, and a new codon fills the A site. (One way to remember this is that the A site brings new amino acids to the growing polypeptide at the P site.) The appropriate tRNA carrying the appropriate amino acid pairs bases with this new codon in the A site. A peptide bond is formed between the two adjacent amino acids held by tRNA molecules, forming the first two links of a chain.

  The ribosome slides again. The tRNA that was in the P site is let go into the cytoplasm, where it will eventually bind with another amino acid. Another tRNA comes to bind with the new codon in the A site, and a peptide bond is formed between the new amino acid to the growing peptide chain.

  The process continues until one of the three stop codons enters the A site. At that point, the protein chain connected to the tRNA in the P site is released. Translation is complete.


  以上就是SAT2化学知识讲解:Protein Synthesis的详细内容,考生可针对文中介绍的方法进行有针对性的备考。

重点单词   查看全部解释    
portion ['pɔ:ʃən]

想一想再看

n. 部分,份,命运,分担的责任

联想记忆
strand [strænd]

想一想再看

n. (线等的)股,缕,一个部分 vt. 弄断(如绳的)

 
stem [stem]

想一想再看

n. 茎,干,柄,船首
vi. 起源于

 
appropriate [ə'prəupriət]

想一想再看

adj. 适当的,相称的
vt. 拨出(款项)

联想记忆
gene [dʒi:n]

想一想再看

n. 基因

联想记忆
enzyme ['enzaim]

想一想再看

n. 酶

联想记忆
code [kəud]

想一想再看

n. 码,密码,法规,准则
vt. 把 ...

 
produce [prə'dju:s]

想一想再看

n. 产品,农作物
vt. 生产,提出,引起,

联想记忆
complementary [.kɔmpli'mentəri]

想一想再看

adj. 补充的,互补的

 
defined [di'faind]

想一想再看

adj. 有定义的,确定的;清晰的,轮廓分明的 v. 使

 


关键字: SAT 化学

发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。