手机APP下载

您现在的位置: 首页 > SAT > SAT每日一题 > 正文

SAT官方每日一题附答案和解析[数学](2014年9月13日)

来源:可可英语 编辑:max   可可英语APP下载 |  可可官方微信:ikekenet

答案:D

解析:

The function with equation y = ((-x)^2) + 1 and the function with equation y = |((x^2) + 1)| each have a minimum value of 1 when x = 0, but the function graphed does not have a minimum value of 1, so these options cannot be correct. The graph of the function with equation y = -(x^2) + 1 contains the point (2 , -3), but the function graphed does not contain any points with -y-coordinates, so this option cannot be correct. The graph of the function with equation y = |(x minus 1)^2| is not symmetric with respect to the y-axis, so it cannot be the equation of the function graphed. Therefore, the only equation that could correspond to the function graphed is y = |((x^2) minus 1)|. Its graph is the |of a parabola opening upward with vertex at (0 , -1).


发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。