The current amputation paradigm breaks these dynamic muscle relationships,
目前的截肢范式打破了这些动态肌肉间的关系,
and in so doing eliminates normal proprioceptive sensations.
这样做也消除了正常的本体感知能力。
Consequently, a standard artificial limb cannot feed back information into the nervous system about where the prosthesis is in space.
因此,,一个标准的假肢无法将假肢在空间中的位置信息反馈回神经系统中。
The patient therefore cannot sense and feel the positions and movements of the prosthetic joint without seeing it with their eyes.
病人因而也无法感知和感受到假肢连接处的位置和动作,除非自己亲眼看到。
My legs were amputated using this Civil War-era methodology.
我的腿就是用这个内战时期的方法截肢的。
I can feel my feet, I can feel them right now as a phantom awareness.
我能感觉到我的双脚,现在就能感觉到它们的存在,仅仅作为一种幻影意识。
But when I try to move them, I cannot.
但是,当试图移动它们时,我却做不到。
It feels like they're stuck inside rigid ski boots.
感觉它们像被卡在坚硬的溜冰鞋里一样。
To solve these problems, at MIT, we invented the agonist-antagonist myoneural interface, or AMI, for short.
在麻省理工学院,为了解决这些问题,我们发明了主动肌和对抗肌肌神经的接口,缩写为AMI。
The AMI is a method to connect nerves within the residuum to an external, bionic prosthesis.
AMI是一种将残肢中的神经连接到外部仿生假肢的方法。
How is the AMI designed, and how does it work?
AMI是如何设计的,又是如何工作的呢?
The AMI comprises two muscles that are surgically connected, an agonist linked to an antagonist.
AMI包括两块通过手术连接的肌肉:主动肌和与之连接的对抗肌。
When the agonist contracts upon electrical activation, it stretches the antagonist.
当主动肌在电激信号作用下收缩时,它会伸展对抗肌。
This muscle dynamic interaction causes biological sensors within the muscle tendon to send information
这种肌肉的动态交互作用,导致肌肉肌腱内的生物传感器,
through the nerve to the central nervous system, relating information on the muscle tendon's length, speed and force.
通过神经向中枢神经系统发送有关肌肉肌腱长度、速度和力量的信息。
This is how muscle tendon proprioception works,
这就是肌肉肌腱本体的工作原理,
and it's the primary way we, as humans, can feel and sense the positions, movements and forces on our limbs.
它也是我们作为人类感觉和感知四肢位置、运动和力量的主要途径。