Icy objects such as comets may have helped start life on Earth by delivering water and carbon-based molecules to the young planet. Because putting something on ice doesn't necessarily keep it from changing: a new study finds that even in frigid, deep space environments, simple hydrocarbon molecules can react to become more complex ones. The process even works when temperatures drop to near absolute zero.
像彗星这样的冰状天体曾给年轻的地球提供水和碳基分子,从而促进了地球上生命的起源。因为只提供冰层并不能有所改变:一项新的研究发现,即使在严寒的深太空环境中,简单的碳氢化合物分子也能发生反应,生成更复杂的化合物。即使在温度接近绝对零度时,反应也能发生。
But just what kind of organic molecules would exist on the icy bodies of a forming solar system? Researchers at the Jet Propulsion Laboratory in Pasadena, California, investigated how organic molecules might evolve toward greater complexity even in the cold of interstellar space.
但是哪种有机分子能存在于最初形成的太阳系的冰层里呢?加利福尼亚州帕萨迪纳喷气推进实验室的研究人员调查了在寒冷的星际空间里,有机分子是如何进化成更高级的化合物。
The scientists found that ultraviolet light, which radiates from stars and galaxies, can induce rapid changes in icy hydrocarbon molecules cooled to 5 kelvin—that's a frosty minus 451 degrees Fahrenheit.
科学家们发现,恒星和星系放射的紫外线能够诱使冷却到5开尔文的冰态碳氢化合物迅速发生变化。5开尔文相当于零下451华氏摄氏度。
The chemical reactions resulted in molecules of more complexity—which is the right direction to go if you want to eventually make amino acids and biological molecules. The study appears in the Astrophysical Journal Letters.
化学反应后产生更复杂的分子——如果你想最终得到氨基酸和生物分子,那么这就是正确的方向。这项研究发表在《天体物理学报通信》上。
It just goes to show—if you really want to freeze something in place, you'd better encase it in carbonite.
这只是证明——如果你真想在太空里冻结某物,最好用焦炭材料来包装。
原文译文属可可原创,未经允许请勿转载!