Researchers have observed a large black hole that gained mass at a rate much faster than scientists had thought possible.
研究人员观察到一个巨大的黑洞,其质量增加的速度比科学家想象的要快得多。
New observations from the Webb telescope involve the largest kind of black hole, a supermassive black hole.
来自韦伯望远镜的新观测涉及最大类型的黑洞,一个超大质量黑洞。
It is called LID-568.
它被称为LID-568。
Scientists say it existed when the universe was about 11 percent of its current age.
科学家们说,在宇宙大约还是现在年龄的11%时,它就存在了。
Black holes are extremely dense objects with gravity so strong that not even light can escape.
黑洞是密度极高的物体,它的引力非常大,连光都无法逃脱。
With their powerful gravitational pull, they grow in mass by taking in material such as gas, dust and stars that are nearby.
在强大的引力作用下,它们通过吸收附近的气体、尘埃和恒星等物质而增加质量。
A supermassive black hole about four million times the mass of the sun, called Sagittarius A*, is at the center of our Milky Way galaxy.
一个质量约为太阳四百万倍的超大质量黑洞,叫做射手座A*,位于我们银河系的中心。
Supermassive black holes are believed to be at the center of most galaxies.
人们认为超大质量黑洞位于大多数星系的中心。
Since NASA's James Webb Space Telescope started operating in 2022, researchers have been surprised to find supermassive black holes in the early universe.
自从NASA的詹姆斯·韦伯太空望远镜于2022年开始运行以来,研究人员一直在发现早期宇宙中的超大质量黑洞,这让他们很惊讶。
Researchers had believed that it takes a longer amount of time to gather such huge amounts of mass.
研究人员曾认为,收集这么巨大的质量需要更长时间。
New observations of one early black hole give information about how this growth took place.
对一个早期黑洞的新观察让人们知道了黑洞的质量增长是如何发生的。
"The existence of supermassive black holes in the early universe challenges our current models of black hole formation and growth," said Hyewon Suh of the International Gemini Observatory in Hawaii and the U.S. National Science Foundation's NOIRLab.
夏威夷国际双子座天文台和美国国家科学基金会NOIRLab的Hyewon Suh说:“早期宇宙中超大质量黑洞的存在对我们目前的黑洞形成和增长模型提出了挑战。”
Suh was the lead writer of the study detailing the findings in the scientific publication Nature Astronomy.
Suh是这项研究的主要作者,他在科学出版物《自然·天文学》上详细介绍了这些发现。
The supermassive black hole LID-568 existed about 1.5 billion years after the Big Bang.
在大爆炸后大约15亿年,超大质量黑洞LID-568才出现。
The Big Bang, the event that started the universe, took place around 13.8 billion years ago.
宇宙起源的大爆炸发生在大约138亿年前。
LID-568 has a mass 10 million times greater than the sun, or two- and one-half times the mass of Sagittarius A*.
LID-568的质量是太阳的1000万倍,或者是射手座A*的2.5倍。
The researchers do not yet know the mass of its home galaxy.
研究人员还不知道它所在的星系的质量。
The Webb telescope showed LID-568 gaining mass at a rate faster than scientists had thought possible.
韦伯望远镜显示,LID-568的质量增加速度比科学家预想的要快。
LID-568 appeared to be consuming infalling material - known as accretion - at more than 40 times the previously believed maximum for such activity.
LID-568似乎正在消耗掉入黑洞的物质--即所谓的吸积--是人们之前以为的最大值的40多倍。
This maximum is known as the Eddington limit.
这一最大值被称为爱丁顿极限。
Early black holes are thought to have started in one of two ways.
人们认为早期的黑洞起源只有两种方式。
They could have begun after the explosive death of the universe's first generation of stars or through the collapse of large clouds of gas present in the early universe.
它们可能是在宇宙第一代恒星爆炸性死亡后开始的,也可能是通过早期宇宙中存在的大量气体云的崩溃而开始的。
The discovery of LID-568 suggests that a lot of mass growth can take place during one time, or episode, of rapid accretion, Suh suggested.
Suh说,LID-568的发现表明,在一段时间内,可能会发生大量的质量增长。
A good sign of a growing supermassive black hole is emission of X-rays, high-energy electromagnetic radiation with very short wavelengths.
超大质量黑洞不断增长的一个好迹象是发射X射线,这是一种波长非常短的高能电磁辐射。
Material moving around a supermassive black hole is superheated and glows strongly in X-ray wavelengths before disappearing in the black hole.
在超大质量黑洞周围运动的物质被过度加热,并在X射线波长下发出强烈的光,然后消失在黑洞中。
The researchers first spotted LID-568 using NASA's Chandra X-ray Observatory.
研究人员一开始利用的是NASA的钱德拉X射线天文台发现了LID-568。
They then studied it more closely with the Webb space telescope.
后来,他们用韦伯太空望远镜对其进行了更近距离的研究。
The Webb observations suggest the existence of a faster way for black holes to take in material.
韦伯的观测表明,黑洞有种更快的方式来吸收物质。
Suh described LID-568 as “remarkable.” She added, "We don't know yet how LID-568 is able to exceed the Eddington limit.
Suh形容LID-568是“不同寻常的”。她补充说:“我们还不知道LID-568是如何超过爱丁顿极限的。
To investigate further, we need more data, so we are planning to conduct follow-up observations with Webb."
为了进一步调查,我们需要更多数据,所以目前正计划与韦伯进行后续观察。”
I’m John Russell.
我是约翰·拉塞尔。