第II卷
本卷包括必考题和选考题两部分。第(13题)~第(21)题为必考题,每个试题考生都必须做答。第(22题)~第(24)题为选考题,考生根据要求做答。
二 填空题:本大题共4小题,每小题5分。
(13)曲线在点(0,1)处的切线方程为_____________。
(14)已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若为的中点,则抛物线C的方程为_____________。
(15)等比数列{}的公比, 已知=1,,则{}的前4项和= _____________。
(16)已知函数的图像如图所示,则_____________。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知,,于A处测得水深,于B处测得水深,于C处测得水深,求∠DEF的余弦值。
(18)(本小题满分12分)
如图,在三棱锥中,⊿是等边三角形,∠PAC=∠PBC=90 o
(Ⅰ)证明:AB⊥PC
(Ⅱ)若,且平面⊥平面,求三棱锥体积。
(19)(本小题满分12分)
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(Ⅰ)A类工人中和B类工人各抽查多少工人?
(Ⅱ)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2
表1:
生产能力分组 | |||||
人数 | 4 | 8 | 5 | 3 |
表2:
生产能力分组 | ||||
人数 | 6 | y | 36 | 18 |
(1)先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ii)分别估计类工人和类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)。
(20)(本小题满分12分)
已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个项点到两个
焦点的距离分别是7和1
(I)求椭圆的方程‘
(II)若为椭圆的动点,为过且垂直于轴的直线上的点,(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线。
(21)(本小题满分12分)
已知函数.
(1) 设,求函数的极值;
(2) 若,且当时,12a恒成立,试确定的取值范围.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。
(22)(本小题满分10分)选修4—1;几何证明选讲
如图,已知ABC中的两条角平分线和相交于,B=60,在上,且。
(1)证明:四点共圆;
(2)证明:CE平分DEF。
(23)(本小题满分10分)选修4—4:坐标系与参数方程。
已知曲线C: (t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值。
(24)(本小题满分10分)选修4-5:不等式选讲
如图,为数轴的原点,为数轴上三点,为线段上的动点,设表示与原点的距离, 表示到距离4倍与到距离的6倍的和.
(1)将表示为的函数;
(2)要使的值不超过70, 应该在什么范围内取值?