一.选择题(本大题共8小题,每小题3分,满分24分。在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。)
1.(2013宜宾)下列各数中,最小的数是( )
A.2 B.﹣3 C.﹣ D.0
考点:有理数大小比较.
分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.
解答:解:∵﹣3<﹣<0<2,
∴最小的数是﹣3;
故选B.
点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.
2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为( )
A.3.3×108 B.3.3×109 C.3.3×107 D.0.33×1010
考点:科学记数法—表示较大的数.
专题:计算题.
分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.
解答:解:330000000用科学记数法表示为3.3×108.
故选A.
点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是( )
A.B.C.D.
考点:简单几何体的三视图.
分析:分别找到四个几何体从正面看所得到的图形比较即可.
解答:解:A.主视图为长方形;
B.主视图为长方形;
C.主视图为长方形;
D.主视图为三角形.
则主视图与其它三个不相同的是D.
故选D.
点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的( )
A.方差 B.众数 C.平均数 D.中位数
考点:方差;统计量的选择.
分析:根据方差的意义作出判断即可.
解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.
故选A.
点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是( )
A.k<1 B.k>1 C.k=1 D.k≥0
考点:根的判别式.
分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.
解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,
∴△=b2﹣4ac=22﹣4×1×k>0,
∴k<1,
故选:A.
点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
6.(2013宜宾)矩形具有而菱形不具有的性质是( )
A.两组对边分别平行 B.对角线相等
C.对角线互相平分 D.两组对角分别相等
考点:矩形的性质;菱形的性质.
分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.
解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;
B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;
C.矩形与菱形的对角线都互相平分,故本选项错误;
D.矩形与菱形的两组对角都分别相等,故本选项错误.
故选B.
点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.
7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为( )
A.3 B.5 C.7 D.9
考点:算术平均数.
分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.
解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,
由图易得当x=7时,直线OP的斜率最大,
即前7年的年平均产量最高,x=7.
故选C.
点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.
8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;
②方程x⊗1=0的根为:x1=﹣2,x2=1;
③不等式组的解集为:﹣1<x<4;
④点(,)在函数y=x⊗(﹣1)的图象上.
其中正确的是( )
A.①②③④ B.①③ C.①②③ D.③④
考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.
专题:新定义.
分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;
根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.
解答:解:1⊗3=12+1×3﹣2=2,所以①正确;
∵x⊗1=0,
∴x2+x﹣2=0,
∴x1=﹣2,x2=1,所以②正确;
∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,
∴,解得﹣1<x<4,所以③正确;
∵y=x⊗(﹣1)=x2﹣x﹣2,
∴当x=时,y=﹣﹣2=﹣,所以④错误.
故选C.
点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.
二.填空题(本大题共8小题,每小题3分,满分24分。请把答案直接填在题中横线上。)
9.(2013宜宾)分式方程的解为 x=1 .
考点:解分式方程.
专题:计算题.
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答:解:去分母得:2x+1=3x,
解得:x=1,
经检验x=1是分式方程的解.
故答案为:x=1
点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
10.(2013宜宾)分解因式:am2﹣4an2= a(m+2n)(m﹣2n) .
考点:提公因式法与公式法的综合运用.
分析:首先提取公因式a,再利用平方差公式进行二次分解即可.
解答:解:am2﹣4an2=a(m2﹣4n2)=a(m+2n)(m﹣2n),
故答案为:a(m+2n)(m﹣2n).
点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
11.(2013宜宾)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= 115° .
考点:平行线的性质.
分析:将各顶点标上字母,根据平行线的性质可得∠2=∠DEG=∠1+∠FEG,从而可得出答案.
解答:解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠2=∠DEG=∠1+∠FEG=115°.
故答案为:115°.
点评:本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行内错角相等.