Steve Shladover outlines the benefits to be gained from vehicles that could drive themselves and discusses how this could be achieved.
斯蒂夫·施多弗阐述了能自动运行的车辆的诸多裨益,并详细论述了如何将其变为现实。
Intelligent Vehicles
Steve Shladover
1 Even when cars were still young, futurists began thinking about vehicles that could drive themselves, without human help. Perhaps the best known of these conjectures was the General Motors Futurama, the hit of the 1939 New York World's Fair. Now, at the start of the new century, it's worth taking a fresh look at this concept and asking how automation might change transportation and the quality of our lives.
智能车辆
斯蒂夫·施多弗
还在汽车问世之初,未来学家就开始设想无需人来操纵便能自动运行的车辆将是什么样儿的。这类设想最出名的或许是1939年纽约世界博览会上轰动一时的由通用汽车公司推出的“未来城市风光”。今天,在世纪之初,以新的目光去审视这样的设想,去探讨自动化将如何改变交通以及我们的生活质量,是颇具价值的。
2 Consider some of the implications of cars that could drive themselves.
● We might eliminate the more than ninety percent of traffic crashes that are caused by human errors such as misjudgments and inattention.
● We might reduce antisocial driving behavior such as road rage, thereby significantly reducing the stress of driving.
● The entire population, including the young, the old, and the infirm, might enjoy a higher level of mobility without requiring advanced driving skills.
● The luxury of being chauffeured to your destination might be enjoyed by all, not just the wealthiest individuals.
● Fuel consumption and pollution might be reduced by smoothing traffic flow and running vehicles close enough to each other to benefit from aerodynamic drafting.
● Traffic-management decisions might be based on firm knowledge of vehicle responses to instructions, rather than on guesses about the choices that drivers might make.
● The capacity of a freeway lane might be doubled or tripled, making it possible to accommodate growing demands for travel without major new construction, or, equivalently, today's level of congestion might be reduced, enabling travelers to save time.
且来看一看能自动运行的汽车意味着什么。
● 我们或许能消除90%以上由于判断失误以及疏忽等人为因素造成的交通事故。
● 我们或许能减少野蛮开车这类有害公众利益的开车行为,从而大大减轻行车压力。
● 社会全体成员,包括老老少少与体弱者,也许都不需习得娴熟的驾车技巧就能较为自由地奔驰了。
● 被开车接送也许会成为世人共同的享受,而不仅仅是最富裕阶层的一种奢侈。
● 车流通畅,相互紧随行驶的车辆能利用前车产生的较小的空气阻力,这些都可能减少油耗和污染。
● 交通管理将会建立在充分了解车辆对指令的应变能力的基础上,而非基于对车辆驾驶者可能采取的行动的粗略估测。
● 高速公路的车容量会增加一倍或二倍,使其不必大兴土木就能适应不断增长的行车需求;或者,同样重要地,目前交通拥堵的程度能得到缓解,以使行车者节省时间。
Is it feasible?
3 This is now a realistic prospect. With advances in technology we can readily visualize your trip on an automated highway system.
是否可行?
目前这已成为一个可以实现的希望。随着技术的进步,我们不难设想自动化公路系统上的行车过程。
4 Imagine leaving work at the end of the day and needing to drive only as far as the nearest on-ramp to the local automated highway. At the on-ramp, you press a button on your dashboard to select the off-ramp closest to your home and then relax as your car's electronic systems, in cooperation with roadside electronics and similar systems on other cars, guide your car smoothly, safely, and effortlessly toward your destination. En route you save time by maintaining full speed even at rush-hour traffic volumes. At the end of the off-ramp you resume normal control and drive the remaining distance to your home, better rested and less stressed than if you had driven the entire way.
且来设想,工作一天下班后,只需开车至最近的一个自动公路入口匝道。到了入口匝道,在仪表板上按一下按钮选择离家最近的出口匝道,随后就休息放松,由车上的电子系统与路旁的电子装置以及其他车辆上类似的系统合作,把车平稳、安全、顺畅地开往目的地。即使是在车流量最大的高峰时段,也能一路全速行驶,从而节省时间。下了出口匝道,再照平常那样驾驶,开过余下的路程回家,那要比自己全程驾驶省力轻松许多。
5 Although many different technical developments are necessary to turn this image into reality, none requires exotic technologies, and all can be based on systems and components that are already being actively developed in the international motor vehicle industry. These could be viewed as replacements for the diverse functions that drivers perform every day: observing the road, observing the preceding vehicles, steering, accelerating, braking, and deciding when and where to change course. 要把这一景象变成现实固然需要各种不同的技术发展,但也无需什么匪夷所思的技术,所有的技术都能以国际车辆制造业正在积极开发研制的各种系统和部件作为基础。这些技术可以被看作是车辆驾驶者日常开车所起各种作用的替代:观察路况,留意前行车辆,掌握方向,加速,刹车,变道。
Observing the road
6 Researchers have developed a road-reference and sensing system that makes it possible to determine accurately a vehicle's position and orientation relative to the lane's center. Cheap permanent magnets are buried at four-foot intervals along the lane centerline and detected by magnetometers mounted under the vehicle's bumpers. . These meters provide the information used by the vehicle's control computer to determine its exact position of the vehicle.
观察路况
研究人员开发了一种路况参考及传感系统,这些能准确判断车辆的方位及所在车道中心的相应定位。价格低廉的永磁体以4英尺的间隔埋设在车道中心线上,车辆保险杆下安装着的磁强计能够测知。这些磁强计向车上的计算机控制台提供信息,以断定车辆的确切方位。