三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.
(16)(本小题满分12分)
设,其中
为正实数
(Ⅰ)当时,求
的极值点;
(Ⅱ)若为
上的单调函数,求
的取值范围。
(17)(本小题满分12分)
如图,为多面体,平面
与平面
垂直,点
在线段
上,
,△
,△
,△
都是正三角形。
(Ⅰ)证明直线∥
;
(2)求棱锥F—OBED的体积.
(18)(本小题满分13分)
在数1和100之间插入个实数,使得这
个数构成递增的等比数列,将这
个数的乘积记作
,再令
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设求数列
的前
项和
.
(19)(本小题满分12分)
(Ⅰ)设证明
,
(Ⅱ),证明
.
(20)(本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设
互不相等,且假定各人能否完成任务的事件相互独立.
(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中
是
的一个排列,求所需派出人员数目
的分布列和均值(数字期望)
;
(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(21)(本小题满分13分)
设,点
的坐标为(1,1),点
在抛物线
上运动,点
满足
,经过
点与
轴垂直的直线交抛物线于点
,点
满足
,求点
的轨迹方程。