手机APP下载

您现在的位置: 首页 > 英语听力 > 国外媒体资讯 > 经济学人 > 经济学人科技系列 > 正文

AI音乐创作(上)

来源:可可英语 编辑:Alisa   可可英语APP下载 |  可可官方微信:ikekenet
  


扫描二维码进行跟读打分训练

In the dystopia of George Orwell's novel "1984", Big Brother numbs the masses with the help of a "versificator", a machine designed to automatically generate the lyrics to popular tunes, thereby ridding society of human creativity.

乔治·奥威尔的小说《1984》以反乌托邦世界为背景,其中的“老大哥”通过“诗化器”麻痹大众(“诗化器”是一种自动生成流行歌曲歌词的机器),从而抹杀了人类的创造力。

Today, numerous artificial-intelligence (AI) models churn out, some free of charge, the music itself. Unsurprisingly, many fear a world flooded with generic and emotionally barren tunes, with human musicians edged out in the process.

如今,许多人工智能(AI)模型都在大量生成粗制滥造的音乐,有些是免费的。难怪许多人担心世界将充斥着千篇一律、情感贫瘠的曲调,音乐家逐渐会被边缘化。

Yet there are brighter signs, too, that AI may well drive a boom in musical creativity.

然而,也有更乐观的迹象表明,AI很可能大大促进音乐创造力迸发。

AI music-making is nothing new. The first, so-called "rules-based", models date to the 1950s.

AI创作音乐并不是什么新鲜事。第一代所谓的“基于规则”的模型可以追溯到20世纪50年代。

These were built by painstakingly translating principles of music theory into algorithmic instructions and probability tables to determine note and chord progressions.

发明这些音乐模型的人煞费苦心地将乐理转化为算法指令和概率表,以确定音符和和弦进行。

The outputs were musically sound but creatively limited.

AI输出的音乐符合乐理,但创意有限。

Ed Newton-Rex, an industry veteran who designed one such model for Jukedeck, a London firm he founded in 2012, describes that approach as good for the day but irrelevant now.

业内资深人士埃德·牛顿·雷克斯为Jukedeck(他于2012年在伦敦创立的一家公司)设计了一个类似的模型,他认为这种方法在当时很有效,但现在已经过时了。

The clearest demonstration that times have changed came in August 2023.

2023年8月是最大的分水岭。

That is when Meta, a social-media giant, released the source code for AudioCraft, a suite of large "generative" music models built using machine learning.

就在那时,社交媒体巨头Meta发布了AudioCraft的源代码,这是一套使用机器学习构建的大型“生成式”音乐模型。

AI outfits worldwide promptly set about using Meta's software to train new music generators, many with additional code folded in.

世界各地的AI公司立即开始使用Meta的软件来训练新的音乐生成器,其中许多生成器都包含了额外的代码。

One AudioCraft model, MusicGen, analysed patterns in some 400,000 recordings with a collective duration of almost 28 months to come up with 3.3bn "parameters", or variables, that enables the algorithm to generate patterns of sounds in response to prompts.

其中一个AudioCraft模型MusicGen分析了约40万份录音文件,总计时间长达近28个月,得出33亿个“参数”或变量,使算法能够根据提示词生成声音模式。

The space this creates for genuinely new AI compositions is unprecedented. Such models are also getting easier to use.

这为AI作曲创造了前所未有的空间。此类模型也越来越容易上手。

In September Stability AI, a firm based in London at which Mr Newton-Rex worked until recently, released a model, Stable Audio, trained on some 800,000 tracks.

牛顿·雷克斯曾在总部位于伦敦的Stability AI公司工作过,该公司在9月份发布了一个名为Stable Audio的模型,该模型在大约80万个音频文件上进行了训练。

Users guide it by entering text and audio clips. This makes it easy to upload, say, a guitar solo and have it recomposed in jazzy piano, perhaps with a vinyl playback feel.

用户可以输入文本和音频片段来指导它生成音乐。这样就可以上传一段吉他独奏,轻而易举就能将其以爵士钢琴的形式重新编曲,或许还能带点儿黑胶唱片的感觉。

Audio prompts are a big deal for two reasons, says Oliver Bown of Australia's University of New South Wales. First, even skilled musicians struggle to put music into words.

澳大利亚新南威尔士大学的奥利弗·鲍恩(Oliver Bown)表示,音频提示亟待解决,原因有二。首先,即使是技术精湛的音乐家也很难将音乐转化为文字。

Second, because most musical training data are only cursorily tagged, even a large model may not understand a request for, say, a four-bar bridge in ragtime progression (the style familiar from Scott Joplin's "The Entertainer").

其次,因为大多数音乐训练数据只是粗略地标注,所以即使是大型模型也可能无法理解用户的诉求,比如“一个四小节的桥段以雷格泰姆进行”(这种风格在斯科特·乔普林的作品《娱乐》中很常见)。

The potential, clearly, is vast. But many in the industry remain sceptical. One widespread sentiment is that AI will never produce true music.

AI潜力无限,但业内许多人仍持怀疑态度,普遍认为AI永远不能创作出真正的音乐。

That's because, as a musician friend recently told Yossef Adi, an engineer at Meta's AI lab in Tel Aviv, "no one broke its heart".

因为AI制作的音乐无法打动人心。Yossef Adi是位于特拉维夫的Meta AI实验室的工程师,他的一位音乐家朋友最近告诉他说:“听了AI创作的音乐后,无人伤心”。

That may be true, but some AI firms reckon that they have found a way to retain and reproduce the "unique musical fingerprint" of their musician users, as LifeScore, a company founded near London, puts it.

这可能是真的,但正如伦敦附近成立的公司LifeScore所说的那样,一些AI公司认为他们已经找到了一种方法,可以保留和复制音乐家用户的“独特音乐指纹”。

LifeScore's AI limits itself to recomposing the elements of a user's original recordings in ways that maintain the music's feel, rather than turning them into something radically new.

LifeScore的AI模型只能基于乐理对用户原音频的元素重新排列组合,而不是生成全新的东西。

It takes about a day to plug into LifeScore's model the dozens of individually recorded vocal and instrumental microphone tracks, or stems, that go into producing an original song.

将数十个单独录制的声乐和器乐麦克风音轨或主干输入LifeScore的模型中大约需要一天的时间,才能制作出一首原创歌曲。

Once that's done, however, the software, developed at a cost of some $10m, can rework each stem into a new tempo, key or genre within a couple of seconds.

一旦制作完成,这款耗资约1000万美元开发的软件可以在几秒钟内将每个主干重新加工成新的节奏、调或流派。

The song's artists, present during the process, choose which remixes to keep. Manually remixing a hit track has traditionally taken one or more highly paid specialists weeks.

音乐家全程参与,决定保留哪些混音。一般来说,手动重新混音热门歌曲需要一名或多名专家,既要花费大量资金,还要耗费数周的时间。

重点单词   查看全部解释    
widespread ['waidspred]

想一想再看

adj. 分布(或散布)广的,普遍的

 
probability [.prɔbə'biliti]

想一想再看

n. 可能性,或然率,机率

联想记忆
solo ['səuləu]

想一想再看

n. 独奏,独唱
adj. 单独的

联想记忆
limited ['limitid]

想一想再看

adj. 有限的,被限制的
动词limit的过

 
automatically [.ɔ:tə'mætikəli]

想一想再看

adv. 自动地,机械地

 
stable ['steibl]

想一想再看

adj. 稳定的,安定的,可靠的
n. 马厩,

联想记忆
guitar [gi'tɑ:]

想一想再看

n. 吉他

 
genre ['ʒɑ:nrə]

想一想再看

n. 类型,流派

联想记忆
understand [.ʌndə'stænd]

想一想再看

vt. 理解,懂,听说,获悉,将 ... 理解为,认为<

 
fingerprint ['fiŋgə.print]

想一想再看

n. 指纹,特点 vt. 取 ... 的指纹,鉴别特征

 

发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。