四、实践应用:(本大题共4个小题,其中第21小题6分,地22、23、24小题各8分,共30分)
21.(6分)(2013•广安)6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).
(1)补全条形统计图.
(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.
考点: 条形统计图;扇形统计图;列表法与树状图法.
专题: 计算题
分析: (1)根据等级为A的人数除以所占的百分比求出总人数,进而求出等级B的人数,补全条形统计图即可;
(2)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.
解答:
解:(1)根据题意得:3÷15%=20(人),
故等级B的人数为20﹣(3+8+4)=5(人),
补全统计图,如图所示;
(2)列表如下:
男 男 女 女 女
男 (男,男) (男,男) (女,男) (女,男) (女,男)
男 (男,男) (男,男) (女,男) (女,男) (女,男)
女 (男,女) (男,女) (女,女) (女,女) (女,女)
所有等可能的结果有15种,其中恰好是一名男生和一名女生的情况有8种,
则P恰好是一名男生和一名女生=.
点评: 此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.
22.(8分)(2013•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
空调 | 彩电 | |
进价(元/台) | 5400 | 3500 |
售价(元/台) | 6100 | 3900 |
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?
考点: 一次函数的应用.
分析: (1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x);
(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式y=150x+6000的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
解答: 解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得
y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000;
(2)依题意,有,
解得10≤x≤12.
∵x为整数,
∴x=10,11,12.
即商场有三种方案可供选择:
方案1:购空调10台,购彩电20台;
方案2:购空调11台,购彩电19台;
方案3:购空调12台,购彩电18台;
(3)∵y=300x+12000,k=300>0,
∴y随x的增大而增大,
即当x=12时,y有最大值,y最大=300×12+12000=15600元.
故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.
点评: 本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
23.(8分)(2013•广安)如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后坝底增加的宽度AF的长;
(2)求完成这项工程需要土石多少立方米?
考点: 解直角三角形的应用-仰角俯角问题.
专题: 应用题.
分析: (1)分别过E、D作AB的垂线,设垂足为G、H.在Rt△EFG中,根据坡面的铅直高度(即坝高)及坡比,即可求出FG的长,同理可在Rt△ADH中求出AH的长;由AF=FG+GH﹣AH求出AF的长.
(2)已知了梯形AFED的上下底和高,易求得其面积.梯形AFED的面积乘以坝长即为所需的土石的体积.
解答: 解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H,
∵四边形ABCD是梯形,且AB∥CD,
∴DH平行且等于EG,
故四边形EGHD是矩形,
∴ED=GH,
在Rt△ADH中,AH=DH÷tan∠DAH=8÷tan45°=8(米),
在Rt△FGE中,i=1:2=,
∴FG=2EG=16(米),
∴AF=FG+GH﹣AH=16+2﹣8=10(米);
(2)加宽部分的体积V=S梯形AFED×坝长=×(2+10)×8×400=19200(立方米).
答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程需要土石19200立方米.
点评: 本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.
24.(8分)(2013•广安)雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小朋友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).
考点: 作图—应用与设计作图.
专题: 作图题.
分析: 分直径在直角边AC、BC上和在斜边AB上三种情况分别求出半圆的半径,然后作出图形即可.
解答: 解:根据勾股定理,斜边AB==4
,
①如图1、图2,直径在直角边BC或AC上时,
∵半圆的弧与△ABC的其它两边相切,
∴=
,
解得r=4﹣4,
②如图3,直径在斜边AB上时,∵半圆的弧与△ABC的其它两边相切,
∴=
,
解得r=2,
作出图形如图所示:
点评: 本题考查了应用与设计作图,主要利用了直线与圆相切,相似三角形对应边成比例的性质,分别求出半圆的半径是解题的关键.
五、理论与论证(9分)
25.(9分)(2013•广安)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙0的切线.
(2)如果⊙0的半径为5,sin∠ADE=,求BF的长.
考点: 切线的判定;等腰三角形的性质;圆周角定理;解直角三角形.
分析: (1)连结OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,
得△FDO∽△FEA,再利用相似比可计算出BF.
解答: (1)证明:连结OD,如图,
∵AB为⊙0的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴EF是⊙0的切线;
(2)解:∵∠DAC=∠DAB,
∴∠ADE=∠ABD,
在Rt△ADB中,sin∠ADE=sin∠ABD==
,而AB=10,
∴AD=8,
在Rt△ADE中,sin∠ADE==
,
∴AE=,
∵OD∥AE,
∴△FDO∽△FEA,
∴=
,即
=
,
∴BF=.
点评: 本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、圆周角定理和解直角三角形.
六、拓展探究(10分)
26.(9分)(2013•广安)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)
考点: 二次函数综合题.
专题: 代数几何综合题.
分析: (1)把点A、B、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答即可;
(2)①根据点A、B的坐标求出OA=OB,从而得到△AOB是等腰直角三角形,根据等腰直角三角形的性质可得∠BAO=45°,然后求出△PED是等腰直角三角形,根据等腰直角三角形的性质,PD越大,△PDE的周长最大,再判断出当与直线AB平行的直线与抛物线只有一个交点时,PD最大,再求出直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,与抛物线解析式联立消掉y,得到关于x的一元二次方程,利用根的判别式△=0列式求出m的值,再求出x、y的值,从而得到点P的坐标;
②先确定出抛物线的对称轴,然后(i)分点M在对称轴上时,过点P作PQ⊥对称轴于Q,根据同角的余角相等求出∠APF=∠QPM,再利用“角角边”证明△APF和△MPQ全等,根据全等三角形对应边相等可得PF=PQ,设点P的横坐标为n,表示出PQ的长,即PF,然后代入抛物线解析式计算即可得解;(ii)点N在对称轴上时,同理求出△APF和△ANQ全等,根据全等三角形对应边相等可得PF=AQ,根据点A的坐标求出点P的纵坐标,再代入抛物线解析式求出横坐标,即可得到点P的坐标.
解答: 解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),
∴,
解得,
所以,抛物线的解析式为y=﹣x2﹣2x+3;
(2)①∵A(﹣3,0),B(0,3),
∴OA=OB=3,
∴△AOB是等腰直角三角形,
∴∠BAO=45°,
∵PF⊥x轴,
∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PD越大,△PDE的周长越大,
易得直线AB的解析式为y=x+3,
设与AB平行的直线解析式为y=x+m,
联立,
消掉y得,x2+3x+m﹣3=0,
当△=32﹣4×1×(m﹣3)=0,
即m=时,直线与抛物线只有一个交点,PD最长,
此时x=﹣,y=﹣
+
=
,
∴点P(﹣,
)时,△PDE的周长最大;
②抛物线y=﹣x2﹣2x+3的对称轴为直线x=﹣=﹣1,
(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,
在正方形APMN中,AP=PM,∠APM=90°,
∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°,
∴∠APF=∠QPM,
∵在△APF和△MPQ中,
,
∴△APF≌△MPQ(AAS),
∴PF=PQ,
设点P的横坐标为n(n<0),则PQ=﹣1﹣n,
即PF=﹣1﹣n,
∴点P的坐标为(n,﹣1﹣n),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴﹣n2﹣2n+3=﹣1﹣n,
整理得,n2+n﹣4=0,
解得n1=(舍去),n2=
,
﹣1﹣n=﹣1﹣=
,
所以,点P的坐标为(,
);
(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,
∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,
∴∠FPA=∠QAN,
又∵∠PFA=∠AQN=90°,PA=AN,
∴△APF≌△NAQ,
∴PF=AQ,
设点P坐标为P(x,﹣x2﹣2x+3),
则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,
解得x=﹣1(不合题意,舍去)或x=﹣
﹣1,
此时点P坐标为(﹣﹣1,2).
综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,
),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣
﹣1,2).
点评: 本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,等腰直角三角形的判定与性质,正方形的性质,全等三角形的判定与性质,抛物线上点的坐标特征,(2)确定出△PDE是等腰直角三角形,从而判断出点P为平行于AB的直线与抛物线只有一个交点时的位置是解题的关键,(3)根据全等三角形的性质用点P的横坐标表示出纵坐标或用纵坐标求出横坐标是解题的关键.