第Ⅰ卷
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)
1.设不等式的解集为M,函数的定义域为N,则为
(A)[0,1) (B)(0,1) (C)[0,1] (D)(-1,0]
2.已知z是纯虚数,是实数,那么z等于
(A)2i (B)i (C)-i (D)-2i
3.函数的反函数为
(A) (B)
(C) (D)
4.过原点且倾斜角为的直线被圆所截得的弦长为
(A) (B)2 (C) (D)2
5.若,则 的值为
(A) (B) (C) (D)
6.若,则的值为
(A)2 (B)0 (C) (D)
7.“”是“方程表示焦点在y轴上的椭圆”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D) 既不充分也不必要条件
8.在中,M是BC的中点,AM=1,点P在AM上且满足,则等于
(A) (B) (C) (D)
9.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为
(A)300 (B)216 (C) 180 (D)162
10.若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为
(A) (B) (C) (D)
11.若x,y满足约束条件,目标函数仅在点(1,0)处取得最小值,则a的取值范围是
(A) (,2 ) (B) (,2 ) (C) (D)
12.定义在R上的偶函数满足:对任意的,有.则当时,有
(A) (B)
(C) (C) (D)
第Ⅱ卷
二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分).
13.设等差数列的前n项和为,若,则 ______________.
14.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有_________人。
15.如图球O的半径为2,圆是一小圆,,A、B 是圆上两点,若A,B两点间的球面距离为,则= _________ .
16.设曲线在点(1,1)处的切线与x轴的交点的横坐标为,令,则的值为 _________.
三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分)
17.(本小题满分12分)
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.
(Ⅰ)求的解析式;(Ⅱ)当,求的值域.
18.(本小题满分12分)
如图,在直三棱柱中, AB=1,,∠ABC=60.
(Ⅰ)证明:;
(Ⅱ)求二面角A——B的大小。
19.(本小题满分12分)
某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量的概率分布如下:
0 | 1 | 2 | 3 | |
p | 0.1 | 0.3 | 2a | a |
(Ⅰ)求a的值和的数学期望;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。
20.(本小题满分12分)
已知函数,其中
若在x=1处取得极值,求a的值;
求的单调区间;
(Ⅲ)若的最小值为1,求a的取值范围。
21.(本小题满分12分)
已知双曲线C的方程为,离心率,顶点到渐近线的距离为。
(I)求双曲线C的方程;
(II)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围。
22.(本小题满分12分)
已知数列满足, .
猜想数列的单调性,并证明你的结论;
(Ⅱ)证明: