三、解答题;本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
已知函数f(x)=
(1) 求的值;
(2) 求使 成立的x的取值集合
【答案】 (1) (2)
【解析】 (1)
。
(3) 由(1)知,
17.(本小题满分12分)
如图2.在直菱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在菱BB1上运动。
(I) 证明:AD⊥C1E;
(II)当异面直线AC,C1E 所成的角为60°时,
求三菱子C1-A2B1E的体积
【答案】 (Ⅰ) 见下 (Ⅱ)
【解析】 (Ⅰ) .
.
(证毕)
(Ⅱ).
.
18.(本小题满分12分)
某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的“相近”作物株数之间的关系如下表所示:
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(Ⅰ)完成下表,并求所种作物的平均年收获量;
(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.
【答案】 (Ⅰ) 46 (Ⅱ)0.4
【解析】 (Ⅰ) 由图知,三角形中共有15个格点,
与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4)。
与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1)。
与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,)。
与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1)。如下表所示:
Y | 51 | 48 | 45 | 42 |
频数 | 2 | 4 | 6 | 3 |
平均年收获量.
(Ⅱ)在15株中,年收获量至少为48kg的作物共有2+4=6个.
所以,15株中任选一个,它的年收获量至少为48k的概率P=.
19.(本小题满分13分)
设为数列{}的前项和,已知,2,N
(Ⅰ)求,,并求数列{}的通项公式;
(Ⅱ)求数列{}的前项和。
【答案】 (Ⅰ) (Ⅱ)
【解析】 (Ⅰ)
-
(Ⅱ)
上式左右错位相减:
。
20.(本小题满分13分)
已知,分别是椭圆的左、右焦点,关于直线的对称点是圆的一条直径的两个端点。
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为,。当最大时,求直线的方程。
【答案】 (Ⅰ) (Ⅱ)
【解析】 (Ⅰ) 先求圆C关于直线x + y – 2 = 0对称的圆D,由题知圆D的直径为直线对称.
(Ⅱ)由(Ⅰ)知(2,0), ,据题可设直线方程为: x = my +2,m∈R. 这时直线可被圆和椭圆截得2条弦,符合题意.
圆C:到直线的距离。
.
由椭圆的焦半径公式得:
.
所以当
21.(本小题满分13分
已知函数f(x)=.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.
【答案】 (Ⅰ).
(Ⅱ)见下。
【解析】 (Ⅰ)
.
所以,。
(Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。
。
。
(证毕)