20.(本小题满分12分)
已知等差数列的公差d不为0,设
(Ⅰ)若 ,求数列的通项公式;
(Ⅱ)若成等比数列,求q的值。
(Ⅲ)若
【答案】(1)(2)(3)略
【解析】 (1)解:由题设,
代入解得,所以
(2)解:当成等比数列,所以,即,注意到,整理得
(3)证明:由题设,可得,则
①
②
①-②得,
①+②得,
③
③式两边同乘以 q,得
所以
(3)证明:
=
因为,所以
若,取i=n,
若,取i满足,且,
由(1)(2)及题设知,,且
① 当时,,由,
即,
所以
因此
② 当时,同理可得因此
综上,
【考点定位】本小题主要考查了等差数列的通项公式,等比数列通项公式与前n项和等基本知识,考查运算能力和推理论证能力和综合分析解决问题的能力。
21. (本小题满分12分)
设函数
(Ⅰ)当曲线处的切线斜率
(Ⅱ)求函数的单调区间与极值;
(Ⅲ)已知函数有三个互不相同的零点0,,且。若对任意的,恒成立,求m的取值范围。
【答案】(1)1(2)在和内减函数,在内增函数。函数在处取得极大值,且=
函数在处取得极小值,且=
【解析】解:当
所以曲线处的切线斜率为1.
(2)解:,令,得到
因为
当x变化时,的变化情况如下表:
+ | 0 | - | 0 | + | |
极小值 | 极大值 |
在和内减函数,在内增函数。
函数在处取得极大值,且=
函数在处取得极小值,且=
(3)解:由题设,
所以方程=0由两个相异的实根,故,且,解得
因为
若,而,不合题意
若则对任意的有
则又,所以函数在的最小值为0,于是对任意的,恒成立的充要条件是,解得
综上,m的取值范围是
【考点定位】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力。
22. (本小题满分14分)
已知椭圆()的两个焦点分别为,过点的直线与椭圆相交于点A,B两点,且
(Ⅰ求椭圆的离心率
(Ⅱ)直线AB的斜率;
(Ⅲ)设点C与点A关于坐标原点对称,直线上有一点H(m,n)()在的外接圆上,求的值。
【答案】(1)(2)(3)
【解析】 (1)解:由,得,从而
,整理得,故离心率
(2)解:由(1)知,,所以椭圆的方程可以写为
设直线AB的方程为即
由已知设则它们的坐标满足方程组
消去y整理,得
依题意,
而,有题设知,点B为线段AE的中点,所以
联立三式,解得,将结果代入韦达定理中解得
(3)由(2)知,,当时,得A由已知得
线段的垂直平分线l的方程为直线l与x轴的交点是的外接圆的圆心,因此外接圆的方程为
直线的方程为,于是点满足方程组由,解得,故
当时,同理可得
【考点定位】本小题主要考查椭圆的标准方程和几何性质,直线方程,圆的方程等基础知识。考查用代数方法研究圆锥曲线的性质和数形结合的思想,考查运算能力和推理能力。