三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分l0分)(注意:在试题卷上作答无效)
设等比数列的前n项和为.已知求和.
【思路点拨】解决本题的突破口是利用方程的思想建立关于a1和公比q的方程,求出a1和q,然后利用等比数列的通项公式及前n项和公式求解即可。
【解析】设的公比为q,由题设得
…………………………………3分
解得或, …………………………………6分
当时,;
当时, ……………………………10分
(18)(本小题满分12分)(注意:在试题卷上作答无效)
△ABC的内角A、B、C的对边分别为a、b、c.己知.
(Ⅰ)求B;
(Ⅱ)若.
【思路点拨】第(I)问由正弦定理把正弦转化为边,然后再利用余弦定理即可解决。
(II)在(I)问的基础上知道两角一边可以直接利用正弦定理求解.
【解析】(I)由正弦定理得…………………………3分
由余弦定理得.
故,因此 .…………………………………6分
(II)
…………………………………8分
故
.…………………………………12分
(19)(本小题满分l2分)(注意:在试题卷上作答无效)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(II)求该地3位车主中恰有1位车主甲、乙两种保险都不购买的概率.
【命题意图】本题主要考查独立事件的概率、对立事件的概率、互斥事件的概率及次独立重复试验发生k次的概率,考查考生分析问题、解决问题的能力.
【解析】记A表示事件:该地的1位车主购买甲种保险:
B表示事件:该地的1位车主购买乙种保险但不购买甲种保险。
C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;
D表示事件:该地的1位车主甲、乙两种保险都不购买;
E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.
(I), , ……………………………3分
……………………………6分
(II)D=,P(D)=1-P(C)=1-0.8=0.2, ……………………………9分
P(E)=. ……………………………12分
(20)(本小题满分l2分)(注意:在试题卷上作答无效)
如图,四棱锥中, ∥,,侧面为等边三角形..
(I) 证明:
(II) 求AB与平面SBC所成角的大小。
【分析】第(I)问的证明的突破口是利用等边三角形SAB这个条件,找出AB的中点E,连结SE,DE,就做出了解决这个问题的关键辅助线。
(II)本题直接找线面角不易找出,要找到与AB平行的其它线进行转移求解。
【命题意图】以四棱锥为载体考查线面垂直证明和线面角的计算,注重与平面几何的综合.
解法一:(Ⅰ)取中点,连结,则四边形为矩形,,连结,则,.
又,故,
所以为直角. ………………3分
由,,,得平面,所以.
与两条相交直线、都垂直.
所以平面. ………………6分
另解:由已知易求得,于是.可知,同理可得,又.所以平面. ………………6分
(Ⅱ)由平面知,平面平面.
作,垂足为,则平面ABCD,.
作,垂足为,则.
连结.则.
又,故平面,平面平面.……9分
作,为垂足,则平面.
,即到平面的距离为.
由于,所以平面,到平面的距离也为.
设与平面所成的角为,则,.……12分
解法二:以为原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.
设,则、.
又设,则.
(Ⅰ),
由得
,
故.
由得,
又由得,
即,故. ………………3分
于是,
.
故,又,
所以平面. ………………6分
(Ⅱ)设平面的法向量,
则.
又,
故 ………………9分
取得,又
.
故与平面所成的角为. ………………12分