(20)本小题主要考查离散型随机变量的分布列和数学期望,考查对立事件、独立事件的概率和求解方法,考查用概率知识解决实际问题的能力.
解:设分别为第一、二、三、四个问题.用表示甲同学第个问题回答正确,用表示甲同学第个问题回答错误,则与是对立事件.由题意得
所以
(Ⅰ)记“甲同学能进入下一轮”为事件,
则
(Ⅱ)由题意,随机变量的可能取值为:.
由于每题答题结果相互独立,
所以
因此 随机变量的分布列为
| |||
|
|
所以
.
(21)本小题主要考查椭圆、双曲线的基本概念和基本性质。考查直线和椭圆的位置关系,考查坐标化、定值和存在性问题,考查数行结合思想和探求问题的能力。
解(Ⅰ)设椭圆的半焦距为c,由题意知:,2a+2c=4(+1)
所以a=2,c=2,
又=,因此b=2。
故 椭圆的标准方程为
由题意设等轴双曲线的标准方程为,因为等轴双曲线的顶点是椭圆的焦点。
所以m=2,
因此 双曲线的标准方程为
(Ⅱ)设A(,),B(),P(),
则=,。
因为点P在双曲线上,所以。
因此,
即
同理可得
.
则 ,
又 ,
所以 .
故
因此 存在,使恒成立.
(22)本小题主要考查导数的概念以及利用导数研究函数性质的能力,考查分类讨论思想、数形结合思想、等价变换思想,以及综合运用知识解决新情境、新问题的能力。
解:(Ⅰ)因为,
所以 ,
令 ,
①当时,恒成立,此时,函数 在上单调递减;
②当,
时,,此时,函数单调递减;
时,此时,函数 单调递增;
时,,此时,函数单调递减;
③当时,由于,
,,此时,函数 单调递减;
时,,此时,函数单调递增.
综上所述:
(Ⅱ)因为a=,由(Ⅰ)知,=1,=3,当时,,函数单调递减;当时,,函数单调递增,所以在(0,2)上的最小值为。
由于“对任意,存在,使”等价于
“在上的最小值不大于在(0,2)上的最小值”(*)
又=,,所以
①当时,因为,此时与(*)矛盾
②当时,因为,同样与(*)矛盾
③当时,因为,解不等式8-4b,可得
综上,b的取值范围是。