19.(本小题满分12分)
在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.
(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;
(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
【解析】(Ⅰ)连结AF,因为EF∥AB,FG∥BC,
EF∩FG=F,所以平面EFG∥平面ABCD,又易证∽,
所以,即,即,又M为AD
的中点,所以,又因为FG∥BC∥AD,所以FG∥AM,所以四边形AMGF是平行四边形,故GM∥FA,又因为GM平面ABFE,FA平面ABFE,所以GM∥平面ABFE.
(Ⅱ)取AB的中点O,连结CO,因为AC=BC,所以CO⊥AB,
又因为EA⊥平面ABCD,CO平面ABCD,所以EA⊥CO,
又EA∩AB=A,所以CO⊥平面ABFE,在平面ABEF内,过点O作OH⊥BF于H,连结CH,由三垂线定理知: CH⊥BF,所以为二面角A-BF-C的平面角.
设AB=2EF=,因为∠ ACB=,AC=BC=,CO=,,连结FO,容易证得FO∥EA且,所以,所以OH==,所以在中,tan∠ CHO=,故∠ CHO=,所以二面角A-BF-C的大小为.
20.(本小题满分12分)
等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
第一列 | 第二列 | 第三列 | |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足:,求数列的前项和.
【解析】(Ⅰ)由题意知,因为是等比数列,所以公比为3,所以数列的通项公式.
(Ⅱ)因为=, 所以
=-=-=
-,所以=-=-.
21.(本小题满分12分)
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为.设该容器的建造费用为千元.
(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的.
【解析】(Ⅰ)因为容器的体积为立方米,所以,解得,所以圆柱的侧面积为=,两端两个半球的表面积之和为,所以+,定义域为(0,).
(Ⅱ)因为+=,所以令得:; 令得:,所以米时, 该容器的建造费用最小.
22.(本小题满分14分)
已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.
(Ⅰ)证明和均为定值;
(Ⅱ)设线段PQ的中点为M,求的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.
【解析】(参考标准答案)