第II卷
二.填空题:本大题共5小题,每小题5分,共25分.
11、11.已知两个单位向量,的夹角为,若向量,,则=___.
答案:-6. 解析:要求*,只需将题目已知条件带入,得:
*=(-2)*(3+4)=
其中=1,==1*1*=,,
带入,原式=3*1—2*—8*1=—6
(PS: 这道题是道基础题,在我们做过的高考题中2007年广东文科的第四题,以及寒假题海班文科讲义73页的第十题,几乎是原题。考查的就是向量的基本运算。送分题(*^__^*) )
12.若双曲线的离心率e=2,则m=____.
答案:48.解析:根据双曲线方程:知, ,并在双曲线中有:,离心率e==2=,
m=48
(PS: 这道题虽然考的是解析几何,大家印象中的解几题感觉都很难,但此题是个灰常轻松得分题(~ o ~)~zZ。你只需知道解几的一些基本定义,并且计算也不复杂。在2008年安徽文科的第14题以及2009福建文科的第4题,同时在我们寒假题海班讲义文科教材第145页的第3题,寒假理科教材第149页第30题都反复训练过。O(∩_∩)O。。所谓认真听课,勤做笔记,有的就是这个效果!!)
13.下图是某算法的程序框图,则程序运行后输出的结果是____.
答案:27. 解析:由框图的顺序,s=0,n=1,s=(s+n)n=(0+1)*1=1,n=n+1=2,依次循环
S=(1+2)*2=6,n=3,注意此刻3>3仍然是否,所以还要循环一次
s=(6+3)*3=27,n=4,此刻输出,s=27.
(PS: 程序框图的题一直是大家的青睐,就是一个循环计算的过程。2010天津文科卷的第3题,考题与此类似。在我们寒假文科讲义117页的第2题做过与此非常类似的,无非更改些数字。基础是关键!)
14.已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.
答案:—8. 解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角。=
(PS:大家可以看到,步骤越来越少,不就意味着题也越来越简单吗?并且此题在我们春季班教材3第10页的第5题,出现了一模一样。怎么能说高考题是难题偏题。)
15.对于,不等式的解集为_______
答案:解析:两种方法,方法一:分三段,
当x<-10时,-x-10+x-2,
当时,x+10-x+2,
当x>2时, x+10-x+2, x>2
方法二:用绝对值的几何意义,可以看成到两点-10和2的距离差大于等于8的所有点的集合,画出数轴线,找到0到-10的距离为10,到2的距离为2,,并当x往右移动,距离差会大于8,所以满足条件的x的范围是.
(PS: 此题竟出现在填空的最后一道压轴题,不知道神马情况。。。。。更加肯定考试考的都是基础,并且!!在我们除夕班的时候讲过一道一摸一样,只是换了数字而已的题型,在除夕教材第10页的15题。。太强悍啦!!几乎每道都是咱上课讲过的题目~~所以,亲爱的童鞋们,现在的你上课还在聊Q, 睡觉流口水吗??)
三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分12分)
某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为及格.假设此人对A和B两种饮料没有鉴别能力.
(1)求此人被评为优秀的概率;
(2)求此人被评为良好及以上的概率.
解:(1)员工选择的所有种类为,而3杯均选中共有种,故概率为.
(2)员工选择的所有种类为,良好以上有两种可能:3杯均选中共有种;
:3杯选中2杯共有种。故概率为.
解析:本题考查的主要知识是排列组合与概率知识的结合,简单题。
17.(本小题满分12分)
在中,的对边分别是,已知.
(1)求的值;
(2)若,求边的值.
解:(1)由 正弦定理得:
及:所以。
(2)由
展开易得:
正弦定理:
【解析】本题考查的主要知识三角函数及解三角形问题,题目偏难。第一问主要涉及到正弦定理、诱导公式及三角形内角和为180°这两个知识点的考查属于一般难度;第二问同样是对正弦定理和诱导公式的考查但形势更为复杂。